

LA-UR-14-28576

Approved for public release; distribution is unlimited.

Title: Results from directly driven implosions of deuterated plastic shells

filled with tritium gas

Author(s): Grim, Gary P.

Casey, Daniel Fincke, James R. Pino, Jesse Smalyuk, Vladimir

Tipton, Robert
Klein, Andreas
Fowler, Malcolm M.
Murphy, Thomas Joseph

Murphy, Thomas Joseph Steinkamp, Michael James

Intended for: 56th Annual Meeting of the APS Division of Plasma Physics,

2014-10-26/2014-10-31 (New Orleans, Louisiana, United States)

Issued: 2014-11-04

Results from directly driven implosions of deuterated plastic shells filled with tritium gas

G. Grim¹, D. Casey², J. Fincke¹, T. Murphy¹, J. Pino², V. Smalyuk², R. Tipton², A. Klein¹, M. Fowler¹, M. Steinkamp

56th Annual Meeting of the APS Division of Plasma Physics

New Orleans, LA, 26-31 October 2014

¹Los Alamos National Laboratory, Los Alamos NM

²Lawrence Livermore National Laboratory, Livermore, *CA*

UNCLASSIFIED

April 2014

LA-UR-14-xxxxx

Outline

- **Physics Motivation**
- **Experimental Design & Data**
- **Summary**

A simple sub-grid burn model in the EAP code suite has been implemented...

Simple burn is calculated using

$$\Phi_{n,i} = \left\langle n_D n_T \right\rangle \left\langle \sigma v \right\rangle V_{cell} \Delta t_i$$

Defining: $n_D = c \cdot n_{ion}$ And letting: $c \equiv \overline{c} + \widetilde{c}$ $n_T = (1 - c)n_{ion}$

The above burn equation is modified to: $\Phi_{n_i} = \theta \langle n_D \rangle \langle n_T \rangle \langle \sigma v \rangle V \Delta t_i$

Where:
$$\theta = \left[1 - \frac{\left\langle \tilde{c}^2 \right\rangle}{\overline{c}(1 - \overline{c})}\right]$$
 BHR may then be used to calculate \overline{c} and \tilde{c}

But a PDF based burn model is the goal

$$p(c;\alpha,\beta) \sim c^{1-\alpha} (1-c)^{1-\beta}$$

Useful for describing uni- and bimodal concentration distributions

BHR provides \overline{c} and \widetilde{c} which are used to invert for α and β The PDF averaged burn is then calculated by:

$$\Phi_{n,i} = M \left(\frac{N_A^2}{A_D A_T} \right) \langle \sigma v \rangle V_{cell} \Delta t_i \int_0^1 dc \rho^2(c) p(c) c(1-c)$$

The MIXCAP platform was chosen to provide validation data, using both NIF and Omega

Omega version of the experiment

Count	dRt (μm)	dRb (μm)
4	1	0
4	1	1
4	1	2
6	0	0

- 60 beams, SG4 phase plates
- SG10v001, 1 ns square pulse
- 27 K.I
- Capsules filled at LLNL with 4 & 10 atm of T₂, mounted at LLE.

Required burn as the signature for mix

- **Burn Data**
 - TT and DT Yield (nToF)
 - Ion temperature (nToF)
 - Burn history (NTD GRH)
 - Core size (KB μ-scopes)
- Hydro performance
 - Radius vs time (SFC)

Excellent hydro and nuclear data was returned...

Yield data behaved sensibly...

- TT neutron yields varied by ~6% across shots from each fill pressure, \rightarrow core T_{ion} varied by ~2%.
- DT neutron yields with CD depth as to be expected.

As did T_{ior}

- T_{ion} varies by ~7% with burial depth
 - consistent with the core temperature → Yield variation due to concentration change

EAP simulation of 4 atm. fill with simple subgrid burn is hit and miss...

DT Yield

DD Yield

UNCLASSIFIED

While 10 atm. Implosions are mostly miss, requiring ad-hoc pre-mix to match DT yields...

Summary

- High quality hydro and nuclear data were collected using Omega MIXCAP platform, including
 - TT, DT, and DD yields, DT T_{ion} and reaction history
- 1-D capsule simulations using the EAP suite, BHR turbulence model, and a simple sub-grid burn have been performed.
- Comparisons with the results from the simple burn model do not compare favorably with data.
- Issues to address going forward include:
 - Laser imprint is ignored,
 - Surface roughness and defects.
 - Gradient scale length inconsistencies with BHR and an Eulerian simulation, consider switching to an ALE code base.

